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Abstract

This paper considers optimal information structures in restricting the information of the
Sender in a cheap talk game. Monotone partitional information structures might not obtain op-
timality, and some signals that the Sender receives are required to be partially garbled together
in order to relax the Sender’s incentive constraints. We provide a partial characterization of
the optimal structure and show that it is from a class of structures that are more general than
monotone partitional, but only exhibit certain local nonmonotonicities of the information struc-
ture. Our analysis builds on the graphical characterization of feasible information structures
in Gentzkow and Kamenica (2016) and shows that this methodology can be used in complex
information design problems with large state and action spaces. In an extension we use the
same approach to solve problems with capacity constraints on communication.

1 Introduction

There are many economically important contexts in which an uninformed decision maker
needs to seek advice from an informed but biased expert before making a decision, such as
when a policymaker consults with an advisor with specialized knowledge or when corporate
headquarters gather information from a particular organizational unit. Starting with the seminal
work of Crawford and Sobel (1982), there is a large literature investigating such interactions
focusing on the case when communication between the parties takes the form of cheap talk: an
informed Sender sending a cheap talk message to a Receiver who subsequently chooses an action.1
Most of this literature assumes that the information of the Sender is exogenously given. However,
there are many settings in which the Receiver can restrict the information that the Sender can
learn before the communication takes place. For example, organizational headquarters can put
restrictions on what processes the head of an organizational unit can monitor and keep records on.
Or a regulatory agency collecting information on demand conditions from firms at a market can
restrict the type of data the firms are allowed to collect on their consumers. More recently, Fischer
and Stocken (2001) and Ivanov (2010b) showed that such reduction of the quality of the information

1See also Green and Stokey (2007) the first version of which was written around the same time.
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of the Sender can be beneficial for the Receiver (and indeed to both parties from an ex ante point
of view). The main intuition is that coarser information can ease the incentive constraints of the
Sender and hence can facilitate credible communication of more information.2

The main focus of the current paper is characterizing the optimal way of restricting the in-
formation of the Sender. Ivanov (2010b) characterizes the optimal information structure in the
uniform-quadratic specification of the Crawford and Sobel model subject to the assumption that
the optimal information structure is monotone partitional, but leaves the question open whether
restricting attention to such information structures results in suboptimality. We show that indeed
it is, even in the uniform-quadratic specification of the cheap talk model. Our leading example
is a range of bias parameters of the Sender for which the optimal partitional structure involves
partitioning the state space (the unit interval in R) to three equal size cells and the Sender only
learning which cell the state falls in, or equivalently only learning the conditional expectation of
the state given the cell where the state is. For biases in the range we consider in this example,
there is no partitional structure with more than three cells for which it is incentive compatible for
the Sender to truthfully reveal the observed cell for all of the possible cell realizations. Inevitably,
when partitioning the state space into four or more cells, conditional expectations of at least two
neighboring cells would be close enough to each other such that the biased Sender would have
an incentive to claim that the state is from the neighboring cell, not from the one that the Sender
observed. On the other hand, it is possible to construct nonpartitional information structures
with four signal realizations, each signal associated with different conditional expectations of the
state, such that the Sender can truthfully reveal his information to the Receiver without violating
incentive compatibility constraints. These structures resemble a partitional structure with four
information cells, but with some garbling of the information from the two middle cells: with some
small probability the signal of the Sender being the second highest one even when the true state
is from the third highest cell, and vice versa. Relative to a partitional structure restricted on the
same states, this garbling pulls the conditional expectations associated with the two signals closer
to each other, away from the conditional expectations associated with the extreme signals. This
in turn makes it possible to add two other information cells at the extremes without violating
incentive compatibility. The trade-off associated with this is that while a higher number of signals
is credibly conveyed to the Receiver, the quality of some of the signals is reduced by the garbling
in the middle, but for a range of biases the garbled information structure with more signals yields
higher payoffs.

For an example how such a garbling of the Sender’s information can be welfare improving,
consider search committee in an academic department in a setting where a job candidate can only

2Relatedly, Austen-Smith (1994) demonstrates that making information acquisition costly for the Receiver can improve
the efficiency of communication, and Ivanov (2010a) and Ambrus et al. (2013) show that communication via strategic
Mediators, where the information of a Mediator is endogenously coarse relative to the Sender, can have similar effects.
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be evaluated by the committee member who is from the same field as the candidate. Assume
that candidates can be lumped into four categories: Unacceptable, Mediocre, Good and Excellent,
and ideally the committee would like to learn from the expert committee member which category
the candidate falls into. However, the committee member is biased towards her own field, and
has an incentive to claim that a candidate is Excellent even when she knows that the candidate is
only Good. In this case, instead of providing information to the committee member that lets her
accurately identify a candidate’s category, it might be better to provide information that garbles
the Mediocre and Good categories to some extent: in particular one which implies that with
positive probability some Mediocre candidates seem Good to the committee member. This makes
the committee member less positive about candidates that seem Good to her, and with enough
garbling the committee member does not have incentive to pretend that she observed an Excellent
signal instead of a merely Good one (assuming that her bias is not too large). The upside is that
the committee can learn the true information of the expert member, while the downside is that the
expert’s information is of lower quality by identifying some Mediocre candidates as Good and vice
versa. But if the required garbling is not too much, it improves welfare relative to an alternative
information structure that allocates candidates only into three ranked categories and accurately
indicates it to the expert member to which category the candidate belongs.

Our main result is a partial characterization of the optimal information structure for quadratic
preferences and general state distributions.3 Just like in Ivanov (2010b), we can restrict attention
to information structures in which the signals are just conditional expectations of the state that
are far away from each other such that the Sender is willing to truthfully convey them to the
Receiver (implying a finite upper bound on the number of signals, determined by the magnitude
of the Sender’s bias). We show that the optimal information structure always takes the following
form. The state space is partitioned into a finite number of interval regions, and there are two
types of regions. The first one is standard information partition cells in which the same signal is
generated from every state of the cell and this signal is not generated at any state from outside the
cell. The second one is interval regions in which there are two different signals are generated, in a
non-monotone fashion, that is the region cannot be divided into two subintervals such that each
signal is only generated in one subinterval. Moreover, both these signals are only generated within
the region. Therefore the type of garbling in optimal structures is limited to garbling information
between two neighboring signals. It cannot involve more complicated non-monotonicities garbling
three or more signals. A special case of this class of information structures is the standard
partitional structure in which each region is an information cell generating only one signal. We
also show that the lowest and highest region in an optimal information structure always has to be

3We are motivated by examples in which the information designer is the Receiver, but with quadratic preferences
the optimal information structures are the same for the Sender and the Receiver: they are the ones that minimize the
conditional variance of the state around implemented actions.
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an information cell generating only one signal, and the Sender’s incentive compatibility constraints
must bind around a garbling region.

The partial characterization result can also be used to exactly characterize the optimal infor-
mation structure for concrete specifications of the cheap talk game. We do this for the uniform-
quadratic specification of the game for biases that are not too small. We show that regions of
parameter values alternate for which the optimal information structure is monotone partitional
and for which the optimal information structure requires regions with garbled information.

Our analysis builds on the graphical characterization of all feasible information structures in
terms of integrated cumulative distribution functions of conditional expectations (posterior means)
in Gentzkow and Kamenica (2016), which in turn combines insights from Blackwell (1953) and
Rothschild and Stiglitz (1970). In our setting with a finite number of signals (implied by the
incentive compatibility conditions), these cumulative distribution functions are piecewise linear,
making it easier to work with them. The analysis shows that the graphical characterization of
Gentzkow and Kamenica can help solving information design problems with large state and action
spaces in more general settings than that they considered – it is not necessary to restrict the Sender’s
preferences over the Receiver’s actions to be state-independent. Also, certain graphical features
of integrated cumulative distribution functions can be associated with the features of information
structures, allowing the graphical method to be utilized when the number of posterior means is
larger than what Gentzkow and Kamenica originally shown.

We further demonstrate the usefulness of working with integrated cumulative distribution
functions by showing how it can be used in solving information design problems in which instead
of incentive compatibility constraints on the side of the Receiver, participants face exogenous
technological constraints, either in the form of an upper bound on the number of messages that
can be used in communication, or an upper bound on the entropy of the information structure
(motivated by having a budget constraint on communication in a setting where more informative
structures are more costly).

A paper using similar techniques as ours, in a different context that combines information
design and voluntary disclosure, is Shishkin (2024). In particular it investigates a setting in which
Sender is trying to persuade Receiver to accept a project, and the signal realization produces a hard
evidence with some probability. The Sender then can decide whether to disclose this hard evidence.
Our setting differs from this in many aspects, one being that Receiver has a much richer action
space, and we demonstrate that the techniques introduced in Gentzkow and Kamenica (2016) can
be used in such settings too. More generally, our work builds on insights from the literature on
Bayesian persuasion starting with Rayo and Segal (2010) and Kamenica and Gentzkow (2011). In
the latter literature Kolotilin (2018), Dworczak and Martini (2019), Ivanov (2021) and Mensch (2021)
identify sufficient conditions for the optimality of monotone partitional information structures.
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A recent paper investigating a similar framework as our benchmark model, except featuring
costly information acquisition, is Kreutzkamp (2023). It derives similar results to the current paper,
but using completely different techniques, from the literature on extreme points and majorization,4
instead of working with the graphical representetion of feasible information structures as the
current paper. Kreutzkamp and Lou (2024) further build on these techniques in a variation
of the model in which the Sender, after choosing an information structure, can cheat either by
manipulating the realization of the signal or lie about the realization. Further relatedly, Lou
(2023) investigates a setting in which a principal delegates decision-making to an expert but can
both control the expert’s information and restrict the set of actions that can be chosen and shows
that under some asssumptions the optimal information structure is monotone partitional. The
current paper does not consider delegation and assumes cheap talk communication following the
information design phase.

Another paper investigating optimal information design in a cheap talk setting is Krähmer
(2021). The main difference between the approaches is that the latter paper allows the principal to
design information structures that give him information about the realization of a random variable
that the agent doesn’t learn. Equivalently, he can randomize between information signals for the
expert in a way that the expert does not know the scope of information she can possibly learn, but
the principal does. We instead focus on situations in which the expert has substantially superior
knowledge and expertise relative to the principal, and assume that it is not feasible for the principal
to randomize the information structure in a way that provides him extra information relative to
the expert. That is, the outcome of any randomization in the mechanism is either not observed
directly by either party, or if it is observed by the principal then it is also observed by the expert:
the latter, using her superior knowledge of the environment, fully recognizes what information
structure got randomly selected. In Krähmer (2021), the principal can use his superior information
to cross-check reports from the agent, which allows him to achieve the first best, full revelation of
information.5 In contrast, in our model information design improves over communication with
unconstrained information on the side of the expert, but the principal’s payoff is bounded away
from the first best.

2 The Model

There are two players, a Sender and a Receiver. The state of the world is stochastic, distributed
according to a commonly known prior distribution F on support Θ = [0, 1]. Suppose that F has a
continuous density function f bounded away from 0. Let µ be the prior mean.

The timeline of the game is as follows. At the beginning of the game, the Receiver first chooses

4See Kleiner et al. (2021) for an introduction to these techniques.
5See also Watson (1996) for a similar construction.
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an information structure π : θ → ∆(S), where S is the set of possible signal realizations. The
true state of the world θ then realizes according to F , and a signal realization is sent to the Sender
according to π(· | θ). The Sender then send a message m ∈ M to the Receiver, where M is the set
of possible messages. After receiving m, the Receiver then chooses an action y ∈ R. That is, the
information control game is a classic cheap talk game, with an additional information design layer
at the beginning. Compared with the classic cheap talk model, this additional information design
layer now grants some power to the Receiver to control the information.

Given the state θ and the action a, the Sender and the Receiver’s utilities are quadratic,

US(y, θ, b) = −[y − (θ + b)]2 and UR(y, θ) = −(y − θ)2,

where b represents the Sender’s state-independent bias in the perspective of the Receiver. Without
loss of generality, we assume that b > 0. As Lou (2023) pointed out, and as we will show in details
later, such preferences are equivalent to preferences that are linear in states. For example, we can
replace the Receiver’s utility as

V R(y, θ) = 2θy − y2.

This equivalence offers special convenience when considering the information design problem
(Gentzkow and Kamenica, 2016). The key implication is that we can consider the distribution of
posterior means in the information design phase, instead of the complete distribution of posterior
beliefs. This reduces the dimension of posteriors to be considered and in turn simplifies the
problem.

The equilibrium concept used is perfect Bayesian equilibrium (PBE). In general, a Sender’s
strategy is a map from the set of signal realizations S to the set of probability distributions ∆(M).
A Receiver’s strategy consists of two parts, an information structure π, and a map from the set of
messages M to the set of probability distributions ∆(Y ) on the set possible actions Y . But we can
vastly reduce the generality of this problem due to the quadratic preferences. First, there is no need
to consider mixed actions. For any posterior belief induced by a signal realization, the Receiver
has a unique optimal action given the quadratic preference. Second, as Ivanov (2010b) shows, a
revelation-principle type of argument establishes that we can without loss of generality consider
truth-telling equilibria in which the Sender truthfully reveals her posterior mean after receiving a
signal realization. Given that the Sender reports the truth, the Receiver then should always choose
the posterior mean reported as the optimal action. For this reason, it is also equivalent to consider
the Sender as the information designer in this game. One can consider the Sender recommending
actions to the Receiver by truthfully reporting the posterior means, and the Receiver is willing to
follow the recommendations.

In order for the Sender to truthfully report her posterior mean, the information structure must
be finite, meaning that it can generate at most finitely many posterior means. To see this, suppose
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that x and x′ are two of the posterior means generated under π. In order for the Sender who gets
the posterior mean x not to report x′, it must be the case that

|x− x′| ⩾ 2b.

Since x and x′ are arbitrarily chosen, this means there must be at least 2b distance between any
two posterior means, which further implies that one can only fit finitely many posterior means in
[0, 1]. Therefore, it suffices to consider information structures that induce finitely many posterior
means. For a given bias b, let Nmax(b) = ⌈1/2b⌉ be the maximum number of posterior means that
can be fitted within [0, 1]. For an information structure π that induces N posterior means, let the
posterior means be ordered

0 < x1 < · · · < xN < 1.

Although the Receiver can use as many signal realizations as possible to induces these posterior
means, it suffices for the Receiver to use N signal realizations. In particular, the Receiver can
combine the signal realizations that induces the same posterior means into a single new signal re-
alization. Let si be the signal realization that induces xi. When looking for the optimal information
structure, we can restrict attention to structures satisfying the incentive compatibility constraints
in terms of posterior means

xi − xi−1 ⩾ 2b, i = 2, · · · , N, (IC)

that maximizes the ex-ante expected utility of the Receiver

EUR(π) =

N∑
i=1

∫
Θ
− (xi − θ)2 f(θ)π(si | θ)dθ. (1)

Notice that truthful reporting by the Sender, and the optimal action choice of the Receiver given
the truthful report, are already incorporated in (1).

Before we start the formal analysis, note that our goal is to find a Receiver-optimal information
structure in terms of ex-ante payoffs. Given the continuous state space, there are some technicalities
that need to be mentioned. For one thing, for an information strcuture π, one can change π(si | θ)
for some θ ∈ Θo without changing the ex-ante payoffs as long as Θo has measure 0. It should be
understood later that if we claim an optimal structure must have certain features, we have ignored
such alternations. For another, in a similar fashion, one can add more signal realizations that
have zero probability to be realized into an information strcuture without changing the ex-ante
payoffs. For this reason, we assume that in all information structures considered below, all signal
realizations can be realized with positive total probabilities.
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3 Mixing Signal Realizations: An Example

In the canonical cheap talk game (Crawford and Sobel, 1982), Sender partitions the space into
small intervals in an equilibrium, and Receiver only learns the interval that contains the true
state. If this is still the case in an information control model, the analysis can be vastly simplified.
Nevertheless, in this section, we provide a simple example to show that even with a simple prior
such as Uniform[0, 1], a partition structure may not be optimal.

As a preparation, we first rewrite the Receiver’s ex-ante expected payoff. We can write (1) as

EUR(π) =

N∑
i=1

∫
Θ

(
2xiθ − x2i − θ2

)
f(θ)π(si | θ)dθ

=

N∑
i=1

∫
Θ

(
2xiθ − x2i

)
f(θ)π(si | θ)dθ −

N∑
i=1

∫
Θ
θ2f(θ)π(si | θ)dθ

=
N∑
i=1

∫
Θ

(
2xiθ − x2i

)
f(θ)π(si | θ)dθ −

∫
Θ
θ2f(θ)dθ.

Observe that in the last line, the second term does not depend on the information structure, so
that it can be omitted when we only aim to compare different structures. This also implies what
actually matters is the 2xiθ − x2i part.

Consider the integral that depends on information structures. The first term is∫
Θ
2θxif(θ)π(si | θ)dθ = 2xiwi

∫
Θ
θ
f(θ)π(si | θ)

wi
dθ = 2wix

2
i .

where
wi ≡

∫ 1

0
π(si | θ)f(θ)dθ

is the overall probability, or the weight of signal realization si is sent according to π.
The second term is∫

Θ
−x2i f(θ)π(si | θ)dθ = −x2i

∫
Θ
f(θ)π(si | θ)dθ = −wix

2
i .

Substitute these results back to (1),

EUR(π) =

N∑
i=1

wix
2
i . (2)

The Receiver’s goal is to choose an information structure that maximizes (2).
We now consider an example that shows mixing between different signal realizations in some

states can improve the Receiver’s ex-ante expected payoff. Let F be Uniform[0, 1], and b = 0.126.
Notice that the bias is just slightly larger than 1/8, implying that it is impossible to fit four partition
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cells while maintaining (IC). To see this, suppose xi are all generated by partition cells (ai−1, ai],
with a0 = 0 and a4 = 1.6 (IC) implies that

x2 − x1 =
a2 + a1

2
− a1 + a0

2
⩾ 2b,

where the first equality follows from uniform prior. This shows

a2 − a0 = a2 ⩾ 4b.

Similarly, since x4 − x3 ⩾ 2b, we also have

a4 − a2 = 1− a2 ⩾ 4b.

Together, we have 8b ⩽ 1, which shows that if b > 1/8, a partition structure with four posterior
means cannot satisfy all (IC) constraints.

However, if one allows mixing signal realizations in some states, fitting four posterior means
is still possible. For instance, we can consider the following structure:

• Partition cells [0, a1] and [a3, 1] induce the first and the last posterior means, x1 and x4,
respectively. Ideally, to fit four posterior means, the Receiver wants to push a1 closer to 0 and
a3 closer to 1 compared with a partition structure.

• In the middle region [a1, a3], the states can send s2 or s3, inducing x2 and x3, respectively.
• For calculation simplicity, let x2 − x1 = 2b and x4 − x3 = 2b.

This structure is shown in Figure 1.

x1 x40 a1 a3 1x2 x3

2b 2b

Figure 1 A Class of Information Structures with Mixing

One particular information structure that fits the description above is as follows.

• a1 = 0.244, a3 = 0.756, so that x1 = 0.122 and x4 = 0.878.
• For states between 0.244 and 0.4446, s2 is sent for sure. For states between 0.5554 and 0.756,

s3 is sent for sure.
• For states between 0.4446 and 0.5554, both s2 and s3 are sent with positive probability. The

probability of sending s2 decreases linearly from 1 at θ = 0.4446 to 0 at θ = 0.5554.

This structure is visualized in Figure 2. The horizontal axis represents the states, the vertical
axis represents the probabilities signals are sent at a state. Later, we will refer to mixing part of a
structure similar to the mixing within [a1, a3] as mixing regions.

6Throughout this paper, following the notation in Crawford and Sobel (1982), we will use ai to denote partition
points.
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0.244 0.5554

0.4446 0.756

s1 s2 s3 s4

Figure 2 An Example Structure

We can then use (2) to calculate the Receiver’s payoff, which is approximately 0.328. The best
partition structure, since four-cell partition is not possible, is the three-cell even-partition structure
that induces posterior means 1/6, 1/2, 5/6 with equal probability. The Receiver’s payoff in this
case is 35/108 ≈ 0.324. Therefore, the best partition structure is worse than the mixing structure
considered above. We will revisit this example in section 6 after introducing some more general
results regarding optimal information structures.

4 The Integrated CDF Framework

The example above shows that it is not sufficient to consider partition structures only. As
mixings may lead to higher payoffs, we necessarily need to formally consider the Receiver’s opti-
mization problem in its full generality.

4.1 Feasibility

Gentzkow and Kamenica (2016) pointed out that not every distribution of posterior means
{(xi, wi)} such that

∑
wixi = µ can be generated by an information structure and provided a tool –

the integrated CDFs – to identify posterior mean distributions that can be induced by information
structures. Let G be some potential distribution of posterior means. The integrated CDF is

c(x) =

∫ x

0
G(t)dt.

There are two extreme cases: the most informative information structure that reveals the true state,
denoted by π, and the least informative information structure that reveals no information at all,
denoted by π. The distribution of the posterior means of the former is just the prior F , while the
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latter is a degenerate distribution with the singleton support at µ. Therefore, the integrated CDFs
are

cπ(x) =

∫ x

0
F (t)dt and cπ(x) =

0 if 0 ⩽ x < µ,

x− µ if µ ⩽ x ⩾ 1.

Then, G is feasible if and only if c(x) is a convex function between cπ and cπ everywhere in [0, 1].
In our case, we only need to consider information structures that induce finite posterior means.

Given {(xi, wi)}, the integrated CDF is a (N + 1)-segment piecewise linear function

cπ(x) =



0 if 0 ⩽ x < x1, · · · Segment 0
w1x− w1x1 if x1 ⩽ x < x2, · · · Segment 1

... i∑
j=1

wj

x−
i∑

j=1

wjxj if xi ⩽ x < xi+1, · · · Segment i

...

x−
N∑
j=1

wjxj if xN ⩽ x ⩽ 1, · · · Segment N.

(3)

Notice that the segments are numbered starting from 0. Segment 0 is constantly 0 for all integrated
CDFs, so that the second segment, Segment 1, is the first “meaningful” segment.7 Formally,
Segment k is the line segment between (xk, cπ(xk)) and (xk+1, cπ(xk+1)), with x0 = 0 and xN+1 = 1.

4.2 Connections between the Integrated CDF and the Objective Function

Following the observation that cπ is strictly above cπ, it is reasonable to conjecture that the
relative locations of the integrated CDF has implications on the informativeness of information
structures. This is indeed the case since the integrated CDFs are strongly related to the concept of
mean preserving spread (See, for example, Machina and Pratt (1997)). Here, by making a “spread”,
the signal becomes more informative, and at the same time, the integrated CDF become higher.
This intuition then lead us to the idea that the area below the integrated CDF may related to the
Receiver’s payoff.

Proposition 1. The Receiver’s expected utility is higher if the area below cπ is larger.

The proof is algebraic and in Appendix A. This is a stronger result than mean-preserving
spread since it does not require the integrated CDF of one distribution to be higher than the

7Observe that the last segment, which is just x− µ, is also the same among all integrated CDFs. In other words, the
piecewise linear integrated CDF must start and end on cπ .
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other pointwise. Notice that this means we can make yet another transformation of the objective
function. Starting from (1), apart from the already simple algebraic expression in (2), we can also
use the geometric result in Proposition 1 to compare two information structures.

5 Features of Optimal Structures

The integrated CDF framework, in particular, Proposition 1, enables us to obtain some useful
insights for characterizing the optimal information structures.

5.1 Graphical Observations

Geometrically, the Receiver’s task is to find an (N + 1)-piece piecewise linear convex function
between cπ and cπ that has as large area below as possible, while keeping (IC) by separating each
pair of posterior means at least 2b away. This naturally means that the Receiver should push the
segments up so that they are tangent to cπ – the highest positions possible. A special case is
Nmax(b) ⩽ 3, in which case tangency must be achieved at each segment of the integrated CDF.
Formally,

Lemma 2. In an optimal information structure, Segments 1 and N−1 must be tangent to cπ. If
at most two or three posterior means can be induced in all truth-telling information structure,
then the integrated CDFs of all optimal information structures must be tangent to cπ at all
segments.

Proof. Here we consider the case that there can be at most three posterior means, which shows
the idea. Since Segments 0 and 3 are fixed and tangent to cπ at x = 0 and x = 1, respectively,
we only need to consider Segments 1 and 2. Suppose Segment 1 is not tangent to cπ, as shown
in the left panel of Figure 3. In Figure 3, the opaque lines are cπ (above) and cπ (below), and
the solid line is the integrated CDF being examined.

Now consider the following modifications. Move x1 to the left slightly, as shown in the
right panel of Figure 3. For small enough change, the new Segment 1 is still under cπ. The
IC condition is preserved since the distance between x1 and x2 are larger, and finally the area
below the integrated CDF is larger, implying that the ex-ante payoff of the Receiver is higher.

Similar argument can be made if Segment 2 is not tangent to cπ, in which case one can
move x3 slightly to the right. ■

When more possible posterior means are possible, we cannot claim that all segments are tangent
to cπ due to IC constraints. Still, there are some observations we can make regarding segments
that are not tangent to cπ, if such segments can ever appear in an optimal structure. Consider an
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x

cπ

1x1 x2 x3
x

cπ

1x1 x2 x3x1 x2 x3

Figure 3 Proof of Lemma 2

optimal information structure π⋆ with N posterior means. Let cπ⋆ be the corresponding integrated
CDF. Moreover, we have the following two observations.

Lemma 3. Let π be an optimal structure. cπ⋆ cannot have two consecutive segments not
tangent to cπ.

Proof. See the left panel of Figure 4. Consider the modification that increases the vertical
coordinate of cπ⋆ at xi slightly. For small increases, the new cπ⋆ is still convex and under cπ,
yet the area below the new cπ⋆ is strictly larger. Notice that the (IC) condition is still perserved
since the location of xi’s are not changed under this modification. ■

Lemma 4. Let π be an optimal structure. If Segment i in cπ⋆ is not tangent to cπ, (IC) must
bind at Segment i− 1 and i+ 1.

Proof. See the right panel of Figure 4. Suppose xi+2 − xi+1 > 2b. Consider the modification
that moves xi+1 slightly to the right. That is, the modification fixes the locations of xi−1, xi
and xi+2 but raises the slope of Segment i, so that the intersection of Segment i and i+1 is now
higher and more to the right. Since the IC constraint between xi+1 and xi+2 is not binding,
if the move is small, (IC) is not violated anywhere, and the area below the new cπ⋆ is strictly
larger. ■

5.2 Partitions

The results above show that the integrated CDF of optimal structures are repeatedly tangent
to the upper bound, cπ. This leads to the question: what does tangency mean for an information
structure? It turns out that tangency is closely related to a feature of the information structure
being quasi-partitional.
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Figure 4 Proofs to the Graphical Observations

Proposition 5. Let π be a finite information structure. The following are equivalent:

• Segment i of the integrated CDF of π is tangent to cπ at (m, cπ(m)).
• The signal realizations in π never cross over m: a signal realization is sent only from

states below m or above m, but never both.

An example is pictured in Figure 5 using the prior Uniform[0, 1]. The corresponding partition
structure is the even-partition structure, with the partition point at 1/3 and 2/3. The three posterior
means are x1 = 1/6, x2 = 1/2 and x3 = 5/6, respectively.

x

cπ

1x1 x2 x3

y2

y3

cπ(1)

Figure 5 An Example with Three Possible Posterior Means

The proof of Proposition 5 is in Appendix A. The intuition is that whenever there is a tangency
point (m, cπ(m)), one can “cut” the integrated CDF at x = m, so that the integrated CDF on [0,m]

and the integrated CDF on [m, 1] both become a new qualified integrated CDF that represents the
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same information structure as before restricted to the corresponding subinterval. Proposition 5
is the bridge between the graphical observations of the integrated CDF and the features of the
information structure being represented. Using the graphical observations in Lemma 2, Lemma 3
and Lemma 4, together with Proposition 5, we have the following partial characterization of the
optimal information structures.

Theorem 6. For any optimal information strcuture of the Receiver:

• There are only two types of components in the structure: partition cells that contain one
posterior mean each, or “mixing regions” that contain two posterior means each.

• If the optimal strcuture contains a mixing region that induces xi and xi+1, then the IC
constraints between xi and xi−1, and between xi+2 and xi+1 must bind.

• Each posterior mean will not be induced by any state outside its cell or its mixing region.
• The optimal strcuture must start and end with partition cells.

This result states that there are only two types of possible components in an optimal structure
and indicates additional features regarding how the structure starts or ends, as well as how
the structure behaves around mixing regions. The first feature corresponds to the graphical
observation that there are no two consecutive segments of the integrated CDF of an optimal
information structure that are both not tangent to cπ. For example, if Segment i− 1 and Segment i
are both tangent (at ai and ai+1, respectively), then xi is induced by the partition cell [ai, ai+1]. If
Segment i of the integrated CDF is not tangent, then Segments i− 1 and i+1 must be tangent, and
xi and xi+1 are induced by a mixing region. The second feature also corresponds to the observation
that states the IC constraint must bind around a non-tangent segment. The third feature is directly
from Proposition 5. The last feature is an implication of Lemma 2.

We should note that the result that IC conditions are binding around mixing regions does not
depend on prior distributions (although placing a mixing region in a particular place depends on
the prior distribution.). Intuitively, mixing is inferior compared with partition cells by generating
less clear signal realizations; that is, the posterior means are less “spread”. Without binding IC
conditions around it, the Receiver would have some flexibility to reduce the extent of mixing and
in turn improve the informativeness of the structure by increasing the extend of spread within the
mixing region.

Using Lemma 2 and Theorem 6, we in particular observe that if bias is relatively large and
Nmax ⩽ 3, the optimal structure does not involve mixing.

Corollary 7. If b ⩽ 1/6, then the optimal information structure must be a partition structure.

Another implication of Theorem 6, together with the observation that the Receiver’s payoff in
(2) only depends on (wi, xi)

N
i=1 is as follows.
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Corollary 8. For each optimal strcuture, there is a payoff-equivalent structure (hence also
optimal) such that a deterministic signal realization is sent at each state.

The proof is again delegated to Appendix A. To illustrate the idea, let’s consider a mixing
region [ℓ, h] that induces xi and xi+1. Suppose xi is induced with weight wi. Pick some ℓ̃ ∈ [ℓ, h]

and find h̃ such that
∫ h̃
ℓ̃ f(θ)dθ = wi. If we pick ℓ̃ = ℓ, [ℓ̃, h̃] is the set of the lowest states within

[ℓ, h] that has weight wi. Therefore, when sending si in [ℓ̃, h̃], the induced posterior mean x̃i must
be weakly smaller than xi. Similarly, if we pick ℓ̃ such that h̃ = h and send si in [ℓ̃, h̃], these states
are the highest states within [ℓ, h]that has weight wi, so that the induced posterior mean x̃i must be
weakly larger than xi. In turn, by the intermediate value theorem, there must be some ℓ̃ in between
such that exactly xi is induced. Since we only have two signal realizations, what left, [ℓ, ℓ̃] ∪ [h̃, h]

must have weight wi+1 and induces xi+1.
Of course, any structure that induces this distribution will be optimal, and there is no need to

use a “linear” probability, or “straight line division” between two signal realizations involved in a
mixing. For example, the following structure in Figure 6 is a four-signal structure such that when
a state mixes between s2 and s3, they are mixed with equal probability. One can verify that this
structure is payoff-equivalent to the structure in Figure 2.

0 1
θ

w

0.244 0.532

0.468 0.756

s1 s2 s3 s4

Figure 6 Another Example of Four-Signal Optimal Structures

6 Full Characterization of Optimal Information Structure with Uniform
Prior

In this section, we show how the partial characterization of the optimal information structures
from Theorem 6 can help in finding the optimal structure by revisiting the uniform prior example
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first introduced in section 3. We will also discuss scenarios where more posterior means (i.e.,
signal realizations) are possible.

6.1 Four-Posterior-Mean Example Revisited

First, notice that the class of the structures introduced in section 3 indeed satisfy all the features
in Theorem 6. Also, since the mixing regions cannot be placed at the beginning or the end of
the support, the structure is also the only possible class of structure that is optimal and involves
mixing.

Since the structure begins and ends with paritition cells, the total probability weights that s1
and s4 are sent (or equivalently, that x1 and x4 are induced) are

w1 = 2x1 and w4 = 2(1− x4).

To calculate the other two weights, the following two relations are used:
4∑

i=1

wi = 1 and
4∑

i=1

wixi =
1

2
.

Substitute w1 and w4 back and solve the system of equations to get

w2 =
1
2 − x3 − 2x1(x1 − x3)− 2(1− x4)(x4 − x3)

x2 − x3
,

w3 =
1
2 − x2 − 2x1(x1 − x2)− 2(1− x4)(x4 − x2)

x3 − x2
.

Further substitute x2 = x1 + 2b and x3 = x4 − 2b to get

w2 =
(2x4 − 2x1 − 1)(1− 2x1 − 4b)

2(x4 − x1 − 4b)
,

w3 =
(2x4 − 2x1 − 1)(2x4 − 4b− 1)

2(x4 − x1 − 4b)
.

(4)

The algebra here shows that the Receiver in fact only needs to consider two parameters: x1 and
x4. All other parameters in the optimization can be written as functions of x1 and x4. This is due
to the fact that the optimal information structure is already largely pinned down by Theorem 6.

The Receiver’s optimization problem is to find the optimal four-signal structure described above
and to compare it with the optimal three-signal structure, which is the three-cell even partition
structure.

Theorem 9. Let 1/8 < b < 1/6. There exists b̄ ∈ (1/8, 1/6) such that if b < b̄, the Receiver’s
optimal information structures is a four-signal structure that satisfies:

• The incentive compatibility constraint is binding everywhere.
• The first posterior mean is x1 = 1

2 − 3b.
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• Both x1 and x4 are induced by partition cells, while x2 and x3 are induced by a mixing
region.

If b > b̄, the optimal structure is the three-cell even-partition structure. Both structures are
optimal if b = b̄.

The proof uses arguments involving standard Kuhn-Tucker conditions and is in Appendix A.
If we set b = 0.126, the optimal structure is the one presented in section 3.

It may be helpful to consider why mixing could be useful in more details. For now, let’s assume
that IC is binding everywhere. For a given pair (x2, x3) such that x3 = x2 + 2b, if it is generated
by a symmetric8 mixing region, then mixing feasibility – x2 and x3 can be generated by a mixing
region, meaning that x2 and x3 cannot be too far away – implies x2 − a1 > b and a3 − x3 > b. This
in turn shows that a1 − x1 < b and x4 − a3 < b, so that the first and the last cells are smaller. This
shows that (i) the mixing region itself does not save space; instead, it captures more space (size
larger than 4b) than two partition cells (total size equal to 4b); and (ii) the mixing region fits more
signal realizations by shifting the conditional expectations of the state after signals in the mixing
region closer to each other, away from the state boundaries.

If b = 1/8, the structure is the four-cell even-paritition structure. When b is slightly larger, as
shown in Figure 1 or Figure 6 for b = 0.126, the optimal four-signal structures are very close to the
four-cell even-partition structure. Intuitively, the partition structures with more cells minimize the
conditional variances, and the even partitions then guarantee all states are valued equally, which
is ideal given the uniform distribution. Therefore, the Receiver prefers the four-cell even-partition
structure if possible. Yet when b > 1/8, the IC constraints rule out the four-cell even-partition
structure, so that the best the Receiver can do is to mimic the four-cell even-partition structure
by adding minimal mixing in the middle and slightly squeezing the boundary cells. However, if
b is significantly larger and closer to 1/6, the mixing structures are less resemble to the four-cell
even-parititon structure, meaning that the Receiver has to mix heavily in the middle and reduce the
size of the the boundary cells by a lot. The mixing and uneveness then lead to worse payoffs than
having one fewer signal realizations, and the three-cell even-partition structure indeed performs
better.

The same logic applies when b is slightly smaller than 1/8. In this case, a five-signal structure
is available, but it is rather uneven. The Receiver would like to use the four-cell even-partition
strcuture instead. As b further decreases, the Receiver would switch to a five-signal structure. This
is shown in Figure 7.

Theorem 9 also shows in general how one can use Theorem 6 to solve optimal information

8In the sense that x2 − a1 = a3 − x3 and the two posterior means are induced with the same weight. There is no
reason to consider asymmetric mixing region given the uniform prior, although we did not impose symmetry when
showing Theorem 9. We also did not impose that IC constraints are binding everywhere.
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Figure 7 Optimal Information Structure of the Receiver for Different Biases

structures. Since the optimal structure can only contains two types of components, the Receiver
should first consider the possibilities of numbers and locations of mixing regions (i.e., the classes
of structures). In the uniform example, when Nmax = 4, there is at most 1 mixing region that
must locate in the middle. For larger Nmax, the Receiver could use more mixing regions or place
the mixing regions in different locations. The way that Theorem 6 helps simplify the Receiver’s
problem is by (i) reducing the possibilities of structures that need to be considered, and (ii) reducing
the number of choice variables in the optimization problem.

6.2 More Posterior Means

The case with Nmax = 5. Suppose that 1/10 < b < 1/8, so that Nmax = 5. We first note
that unlike the the case with Nmax = 4, the optimal partitional information structure is an uneven
partition structure with smaller and larger cells alternating, as shown in Ivanov (2010b).

For general optimal structures, we also need to consider mixing regions. By Theorem 6, as the
mixing regions cannot be at the boundaries, there can be at most one mixing region – a region
either induces x2 and x3 or induces x3 or x4. We should note that these two possibilities are
symmetric given the uniform prior, so that it is sufficient to consider a mixing region that induces,
say, x2 and x3. That is,

• x1 is generated by partition cell [0, a1], x4 is generated by partition cell [a3, a4], and x5 is
generated by partition cell [a4, 1].

• x2 and x3 is generated in mixing region [a1, a3].

An example of such structures is shown in Figure 8, and the states in the shaded area are in the
mixing region.

Using the uniform prior,

a1 = 2x1, a3 = 2x4 − 2x5 + 1, and a4 = 2x5 − 1.

Because the IC constraints must bind around the mixing region, x2 = x1 + 2b and x3 = x4 − 2b. In
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Figure 8 A Five-Signal Example

order for x2 and x3 to be able to be generated by an information structure,

2x2 − a1 ⩾ 2x3 − a3,

which simplifies to
2x5 − 1 ⩽ 8b. (5)

There are also two remaining IC constraints,

x5 − x4 ⩾ 2b

x4 − x1 ⩾ 6b,
(6)

where the second equation is the IC constraint x3 − x2 ⩾ 2b, combined with the two binding
constraints. It is also easy to solve the weights,

w1 = 2x1, w4 = 4x5 − 2x4 − 2, w5 = 2− 2x5.

The other two weights are solved by

w2 + w3 = a3 − a1,

w2x2 + w3x3 =
1

2
(a23 − a21),

which gives

w2 = −(4b+ 2x1 − 2x5 + 1)(2x1 − 2x4 + 2x5 − 1)

2(4b+ x1 − x4)
,

w3 =
(−4b+ 2x4 − 2x5 + 1)(2x1 − 2x4 + 2x5 − 1)

2(4b+ x1 − x4)
.

Notice that the Receiver only has three choice variables: x1, x4, and x5. The Receiver maximizes∑5
i=1wix

2
i subject to (5) and (6). Let λ1, λ2, λ3 be the three Lagrange multipliers, we can construct

the Lagrange function and get

x1 =
1− 8b

2
, x4 =

1 + 4b

2
, x5 =

1 + 8b

2
, and

λ1 = b− 8b2, λ2 = 8b(10b− 1), λ3 = 4b(10b− 1).
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Notice that all three Lagrange multipliers are positive given 1/10 < b < 1/8. This implies all three
constraints are binding. In particular, a binding (5) implies the mixing is degenerate, i.e., both x2

and x3 are also generated by partition cells. This is the partition structure suggested by Ivanov
(2010b). Therefore, the general optimal structure is either this uneven five-cell partition structure
when b is closer to 1/10, or the four-cell even-partition structure when b is closer to 1/8. We should
highlight that with Theorem 6, solving the optimal structure when 1/10 < b < 1/8 again reduces
to a single Lagrange problem with limited number of choice variables.

The case with Nmax = 6. As the last example, consider 1/12 < b < 1/10, so that the Receiver
can at most induces six posterior means. Notice that there are more possibilities regarding mixing
regions. Firstly, if we only consider the structures with one mixing region, it can be placed to
induce (x2, x3), (x3, x4), or (x4, x5). Secondly, a larger Nmax also allows for more mixing regions.
We can now place two mixing regions, one inducing (x2, x3), and the other inducing (x4, x5).

Given the uniform prior, all states are ex-ante equally important. This implies that there is no
reason to consider asymmetric structures. If we consider the case with one mixing region, this
suggests that we only need to consider mixing happens in the middle with x3 and x4. Also,

• x1, x2, x5 and x6 are generated by partition cells [0, a1], [a1, a2], [a4, a5] and [a5, 1], respectively.
• The IC condition is binding between x2 and x3, and between x4 and x5.

However, an easy argument shows that this is impossible. Note that the mixing region must
be at least 4b in length. The two partition cells that induces x1 and x4 must be at least 4b length as
well since x2−x1 ⩾ 2b. The same holds for the two cells induces x5 and x6. This suggests the total
length of the structure must be at least 12b, which exceeds 1. A general version of this argument
is formalized in Lemma 19 in Appendix B. We should also note that imposing symmetry is not
necessary and just for the ease of exposition. In Appendix B, Theorem 21 shows that the optimal
structure here cannot contain exactly one mixing region no matter where it is placed.

Therefore, we just need to consider the case that there are two mixing regions:

• x1 is generated by the partition cell [0, a1], and x6 is generated by the partition cell [a5, 1].
• x2 and x3 are induced by a mixing region [a1, a3], and x4 and x5 are induced by a mixing

region [a3, a5].
• x2 − x1 = 2b, x4 − x3 = 2b, x6 − x5 = 2b.

An example of such structures is shown in Figure 9, and the states in the two shaded areas are
in the two mixing regions.

We need x1, x3, x6, and a3 to pin down a structure.9 It can be verified that all xi’s and wi’s can
then be expressed using the four choice variables here. There are four constraints. The first two

9Of course, there are many other combinations of parameters that can pin down a structure within the family
described here. But in general, one need four choice variables. Also, if one only considers symmetric structures,
a3 = 1/2 and x6 = x1, so only two choice variables are needed.
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Figure 9 A Six-Signal Example

ensure that the mixing regions can be generated by an information structure:

2x2 − a1 ⩾ 2x3 − a3,

2x4 − a3 ⩾ 2x5 − a5.

The remaining two are the IC constraints, x3−x2 ⩾ 2b and x5−x4 ⩾ 2b. Notice that by Theorem 6,
the remaining IC constraints must bind. The optimal solution is

x1 =
1− 10b

2
, x3 =

1− 2b

2
, x6 =

1 + 10b

2
, a3 =

1

2
.

This is a symmetric structure that converges to the six-cell even-partition structure as b → 1/12.
Again, the Receiver compares this structure with the five-cell even-parittion structure. The former
is better when b is closer to 1/12, while the latter is better when b is closer to 1/10.

We plot the Receiver’s optimal expected payoff under the optimal structures derived above for
b not too small, which is the blue curve in Figure 10. As a comparison, the Receiver’s optimal
expected payoff in canonical cheap talk model without an information design layer is the orange
curve. Not surprisingly, when b < 0.25 so that the informative equilibria are possible, the optimal
structures with information design performs strictly better than the best structures in canonical
cheap talk setting, which are always partition structures. In our setting, there are ranges of b

where an even-partition structure is optimal, and the optimal expected payoffs for such a range
are constant. These are the flat parts of the graph. For other b’s, the optimal structure is either
a structure with mixing regions or a structure with uneven partitions. In such cases, the way of
mixing or the uneveness of the partitions depend on b, and the expected payoff is strictly decreasing
in such b. Under the canonical model, Crawford and Sobel (1982) has shown that although the
numbers of partition cells in the optimal structures may remain constant for a range of b, the specific
partition points depend on b, leading to a curve that is strictly decreasing in b. Moreover, notice
that the canonical setting usually allow much fewer cells (regions). For example, for b around
1/12, the optimal structure with information design has 6 cells (regions), yet the optimal structure
without information design has 3 cells when b < 1/12, and only 2 cells when b > 1/12.
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Figure 10 Receiver’s Optimal Expected Payoff in Models with and without Information Design

7 Exogenous Capacity Constraints on Communication

We will next show that the graphical framework can be useful in more information design
problems where the posterior mean approach is applicable. In the information control problem,
the Receiver (the principal, or the information designer) faces endogenous constraints, namely,
incentive compatibility constraints, that prevent the designer to use a perfectly informative in-
formation structure. In what follows, we will consider a principal restricted by exogenous or
technical constraints. Such constraints are commonly observed in engineering problems (see Gray
and Neuhoff (1998) for a survey). Below we consider the case when there is an upper bound on the
number of signals available, and when there is an upper bound on the entropy of the information
structure. In both problems we assume that the agent has the perfectly aligned preference as the
principal, so the only relevant constraints stem from bounded capacity.

7.1 Upper Bounds on Signal Numbers

Suppose that the principal can only include at most K signals in any information structure,
whereK is finite. An easy argument establishes that the optimal information structure is partitional
using the graphical framework.
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Proposition 10. The optimal information structure is partitional.

Proof. Suppose not. Proposition 5 then suggests that the integrated CDF induced by the
optimal structure must have a piece that is not tangent to cπ, as shown in Figure 11. But then
the principal can make a (slight) parallel shift of the non-tangent piece and achieve a strictly
better payoff, which is a contradiction. ■

cπ

ai−1 xi xi+1 ai+1

x̃i x̃i+1

Figure 11 Parallel Shift

The Quadratic Utility Example. Once we determine that the optimal information structure is
partitional, we can study the problem further by considering, for example, what specific features an
optimal information structure have with a specific utility function. Here, we consider the quadratic
utility. Since the optimal structure is partitional, we can just consider the K-cell partitional
structures characterized by the partition points

0 = a0 < a1 < · · · < aK−1 < aK = 1.

Under quadratic utility, (2) gives the principal’s objective function, which is

K∑
k=1

[∫ ak
ak−1

ωf(ω)dω
]2∫ ak

ak−1
f(ω)dω

. (7)
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For a generic k = 1, · · · ,K − 1, there are only two terms in (7) containing ak. That is,[∫ ak
ak−1

ωf(ω)dω
]2∫ ak

ak−1
f(ω)dω

+

[∫ ak+1

ak
ωf(ω)dω

]2∫ ak+1

ak
f(ω)dω

.

Since the density assumed to be positive everywhere, the first order condition can be simplified to

ak =
xk + xk+1

2
. (8)

This is summarized as follows.

Proposition 11. Suppose that utility is quadratic. In an optimal structure, the partition points
must be the average of the two neighboring posterior means.

In the case of quadratic utility and uniform prior, (8) simply gives the even partition structures
as expected. However, we should point out that under general prior distributions, the optimal
structure does not assign equal weights to each cell, nor does it keep the conditional variances
equalized among all the cells.10

7.2 Upper Bounds on Information Entropy

A different type of constraint on the information structure that can be used by the Sender is a
cap on its entropy, a commonly used measure of the informativeness of the structure. This can be
the case if there is a fixed budget for establishing the information structure and more informative
structures are more expensive.

For an information structure that induces (discrete) distribution of posterior means (wk, xk)
K
k=1,

the information entropy is defined by11

E(π) = −
K∑
k=1

wk lnwk.

Consider the problem where the principal chooses an information structure π to maximizes
the expected utility under the induced posterior distribution subject to the constraint

E(π) ⩽ E. (9)

10As an example, consider the prior density f(θ) = 2−2θ, and letK = 2. The optimal partition point is approximately
0.382, and the weights of the two cells are approximately 0.618 and 0.382, respectively. The conditional variances are
approximately 0.012 and 0.021, respectively.

11For the ease of notation, we adopt the natural logarithm. Changing the base of the logarithm will not alter the
qualitative results below. Also, since the definition of differential entropy (or continuous entropy) is known to be not
fully compatible with the discrete version, we will rule out any information structure that induce truth-telling in a
non-trivial subset of the state space by setting the entropy of such information structure to be +∞, which is the limit of
the entropy of finer and finer partition structures.
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Proposition 12. The optimal information structure is partitional. Also, the entropy constraint
(9) must bind in an optimal structure.

To see that the optimal structure is partitional, recall that Segment i of the integrated CDF has
the expression  i∑

j=1

wj

x−
i∑

j=1

wjxj .

Therefore, as long as the slope of the integrated CDF are not altered, the entropy will not change.
Then, the parallel shift argument in the proof of Proposition 10 applies again. For the proof that the
entropy constraint must bind, see Appendix A. The idea is also simple – Partitioning an existing
cell always provides more information and increases the entropy. The entropy capacity E in (9)
then acts as a budget constraint: if the constraint does not bind, the principal can always partition
one existing cell further, leading to a higher payoff.

The Quadratic Utility Example. As we now know that the optimal structure is partitional, we
again consider the special case where the utility function is quadratic.

The Lagrangian is

L =
K∑
k=1

[∫ ak
ak−1

ωf(ω)dω
]2∫ ak

ak−1
f(ω)dω

+ λ

[
E +

K∑
k=1

∫ ak

ak−1

f(ω)dω ln

(∫ ak

ak−1

f(ω)dω

)]
.

The first order condition with respect to ak simplifies to (again using f(·) > 0 everywhere)

ak =
xk + xk+1

2
+ λ

lnwk − lnwk+1

xk+1 − xk
. (10)

Comparing this with (8), i.e., the optimal ak when the only constraint is that the number of cells,
the first term of (10) is exactly (8), while there is a second term adjusting the partition points to
satisfies the entropy constraint. Due to the fact that (9) always binds in optimum, λ > 0. Since
xk+1 > xk by construction, the sign of the second term is determined by the sizes of wk and wk+1.

However, the optimal structure can be more easily solved by reformulating the objective func-
tion. Importantly, since the values of posterior means do not enter the entropy, the problem can
be further simplified if the conditional variances depend on the weights of the cells only. This is
satisfied, for example, by uniform prior. Assume that the prior is uniform for the remainder of
this section, so that the ex-ante expected payoff is

− 1

12

K∑
i=1

w3
i .

We can also without loss to consider the upper bound of the entropy takes the form of ln(K + ε)

for some ε ∈ [0, 1). Not only {[lnK, ln(K + 1))}K covers the R+ space, lnK is also the entropy of
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the K-cell even partition structure. That is, for each K, we know that the optimal structure should
perform at least as good as the K-cell even-partition structure.

Proposition 13. Suppose that the prior distribution is uniform on [0, 1], and the principal’s
payoff function is quadratic. If the upper bound of the entropy is lnK for someK = 1, 2, 3, · · · ,
the optimal structure is a K-cell even partition structure. If the upper bound of the entropy
is ln(K + ε) for some ε ∈ (0, 1), the optimal structure is a (K +1)-cell partition structure such
that:

• All but one cells share the same cell size.
• The remaining one cell has a smaller cell size compared to all other cells.

The proof is in Appendix A. To show this result, we start by establishing the standard Lagrangian
for a generic k-cell structure (where k is at least K). The first order condition indicates that the
optimal structure can have at most two cell sizes, and all but one cell must share the same size. We
can then focus on the structures with this feature. It is easy to check that with ε ∈ (0, 1), there exists
a (K+1)-cell structure such that it contains K equa-length, larger cells and one additional smaller
cell. However, for any structure with more cells (and the feature aforementioned), the equal-length
cells must be smaller than the one remaining cell (which holds for (K + 1)-cell structures when
ε = 0). One example with K = 3 and ε ∈ (0, 1) is shown in Figure 12. By further checking the
second order condition, if the structure is at least locally optimal, the cell size shared by all but one
cells must be at least as large as the size of the remaining one cell. This rules out the possibility
that the optimal structure has (K + 2) or more cells when ε ∈ (0, 1), or the optimal structure has
(K + 1) or more cells when ε = 0.

0 1

(a) A Four-Cell Structure

0 1

(b) A Five-Cell Structure

Figure 12 Fitting One More Cell
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A Proofs

Proof of Proposition 1

We are interested in the area below cπ, which is characterized by the intersection points of
segments of cπ. It is clear that Segment i and Segment (i + 1) intersect at xi+1, the (i + 1)-
th posterior mean. Let yi+1 be the corresponding vertical coordinate of the intersection point.
Substitute xi+1 back to either Segment i or Segment (i+ 1), we get that

yi+1 =

i∑
j=1

wj(xi+1 − xj). (11)

In general, the area below cπ can be decomposed naturally into a triangle and several trapezoids,
by vertically slicing at each xi. An example with N = 3 is showing in Figure 5. Working towards a
general conclusion, let’s first consider the area excluding the last trapezoid (i.e., the trapezoid with
the edge (xN , 0) – (1, 0)), denoting it by SN .

When N = 2, the area excluding the last trapezoid is just the triangle, with the area

S2 ≡
1

2
(x2 − x1)y2 =

1

2
(x2 − x1)w1(x2 − x1) =

1

2
w1(x2 − x1)

2.
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For N = 3,

S3 ≡
1

2
(x2 − x1)y2 +

1

2
(x3 − x2)(y2 + y3)

=
1

2
w1(x2 − x1)

2 +
1

2
(x3 − x2) [w1(x2 − x1) + w1(x3 − x1) + w2(x3 − x2)]

=
1

2

[
w1(x3 − x1)

2 + w2(x3 − x2)
2
]
.

This naturally leads to the following: For any finite N ,

SN =
1

2

N−1∑
j=1

wj(xN − xj)
2.

We can show this by induction. This has been verified for N = 2. Suppose that this holds for
N = k,

Sk =
1

2

k−1∑
j=1

wj(xk − xj)
2.

Consider N = k + 1. Observe that

Sk+1 = Sk +
1

2
(xk+1 − xk)(yk + yk+1)

=
1

2

k−1∑
j=1

wj(xk − xj)
2 +

1

2
(xk+1 − xk)

k−1∑
j=1

wj(xk − xj) +

k∑
j=1

wj(xk+1 − xj)

 . (12)

The first line follows from the fact that Sk+1 can be decomposed into the last trapezoid it includes
(i.e., the trapezoid with the edge (xk, 0) – (xk+1, 0)) and what left. Yet what left is the same “shape”
as the shapes included in SN . The second line follows from the induction assumption and (11).

For any i = 1, · · · , k − 1, let’s collect the terms in (12) that contains the coefficient wi. For now,
let’s also omit the coefficient 1/2 for the ease of notations. These terms are

wi(xk − xi)
2 + wi(xk+1 − xk) [(xk − xi) + (xk+1−xi

)] = wi(xk+1 − xi)
2.

What left is just the term contains the coefficient wk, which is just wk(xk+1 − xk)
2. Substitute these

back to (12) and put the coefficient 1/2 back,

Sk+1 =
1

2

k∑
j=1

wj(xk+1 − xj)
2,

which is exactly what we need.
Now let’s consider the last trapezoid. The area, denoted by TN , is

TN ≡ 1

2
[yN + cπ(1)] (1− xN ),
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where

cπ(1) = cπ(1) =

∫ 1

0
F (t)dt

= F (t)t|10 −
∫ 1

0
tf(t)dt

= 1−
N∑
j=1

wjxj .

Following the expressions above,

2(SN + TN ) =

N−1∑
j=1

wj(xN − xj)
2 + (1− xN )

N−1∑
j=1

wj(xN − xj) + 1−
N∑
j=1

wjxj

 . (13)

Notice that we consider 2(SN +TN ) to remove the coefficient 1/2 from the right hand side. Collect
terms that contains the coefficient wi, for i = 1, · · · , N − 1,

wi(xN − xi)
2 + wi [(xN − xi)− xi] (1− xN ) = wixN − 2wixi + wix

2
i .

This shows, by substituting this back to (13),

2(SN + TN ) =

N−1∑
j=1

(
wjxN − 2wjxj + wjx

2
j

)
+ (1− wNxN )(1− xN )

= 1 +

N−1∑
j=1

wj

xN − xN − wNxN − 2
N−1∑
j=1

wjxj + wNx2N +
N−1∑
j=1

wjx
2
j

= 1− 2
N∑
j=1

wjxj +
N∑
j=1

wjx
2
j .

Therefore,
SN + TN =

1

2
EUR(π) +

1

2
− µ,

where µ is the prior mean. This concludes the proof. ■

Proof of Proposition 5

We start by noting that the conclusion in Gentzkow and Kamenica (2016) is not restricted to
the case that the prior distribution has the support [0, 1]. Instead, it works on all closed intervals.
The details are as follows:

• The part showing that the integrated CDF of an information structure must be between cπ

and cπ uses the property of mean-preserving spread, which is not a concept restricted on [0, 1].
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• The part showing that a convex function between cπ and cπ corresponds to an information
structure uses Proposition 1 from Kolotilin (2014), which is shown under a more general
interval [r, r].

In particular, we will later use Gentzkow and Kamenica (2016) on [0,m] for some m < 1.

Let cπ be the integrated CDF for some finite π such that segment i of cπ is tangent to cπ at some
horizontal coordinate m ∈ (0, 1). This implies the tangency point is(

m,

∫ m

0
F (t)dt

)
.

Segment i is a straight line passes through this point, with the slope of F (m), the slope of cπ at this
point. Therefore, we can write Segment i as

cπ(x) = F (m)x+ c

for some constant c. Substitute the coordinate of the tangency point,

c =

∫ m

0
F (t)dt−mF (m)

= tF (t)|m0 −
∫ m

0
tdF (t)−mF (m)

= −
∫ m

0
tdF (t)

= −F (m)E(θ | θ ∈ [0,m]).

The second line uses integration by parts, the third line uses the fact that F (0) = 0, and the last line
uses the definition of conditional expectation of θ on [0,m]. Therefore, the expression of Segment
i is

cπ(x) = F (m)x− F (m)E(θ | θ ∈ [0,m]). (14)

Let’s now take a detour and consider an information structure on [0,m]. Let the prior distribu-
tion on [0,m] be

F̃ (x) =
F (x)

F (m)
.

That is, we consider the original prior distribution F conditioned on [0,m]. An information
structure based on F̃ has the upper bound

c̃π(x) =

∫ x

0
F̃ (t)dt =

1

F (m)
cπ(x).

The lower bound c̃π is a piecewise linear function which is 0 before E(θ | θ ∈ [0,m]), and

x− E(θ | θ ∈ [0,m])

32



for x ∈ [E(θ | θ ∈ [0,m]),m]. Notice that c̃π and c̃π coincide at m.

Now consider cπ again, but scaled by 1/F (m). After this constant scaling, the new Segment 0
is still on the horizontal axis, and the new Segment i is, by using (14), exactly c̃π. Considering cπ

only on [0,m], the scaled version
cπ

F (m)

is a (i + 1)-segment piecewise linear convex function between c̃π and c̃π. This implies the scaled
version, cπ/F (m), defines an information structure on [0,m]. Correspondingly, cπ then also defines
an information structure such that no signal realization sent at the states below m is also sent above
m. (To further confirm this, one can check that the weighted average of xi before m, using the
scaled cπ/F (m), is E(θ | θ ∈ [0,m]).)

Conversely, consider an information structure such that, for some m ∈ (0, 1), no signal realiza-
tion sent at the states below m is also sent above m. One can imagine that there is a “straight line”
that divide [0, 1] into two independent parts, [0,m] and (m, 1]. Suppose that there are i posterior
means induced before m; that is,

0 < x1 < · · · < xi < m.

(Immediately, it is impossible that xi = m for some xi. Otherwise, given that we have ruled out
posterior means with zero weights, the signal realization that induces xi must be sent above and
below xi.)

What is the expression of Segment i? Recall that in general, Segment i has the expression

cπ(x) =

 i∑
j=1

wj

x−
i∑

j=1

wjxj .

Because of the straight line formulation,

i∑
j=1

wj = F (m),

since the signal realizations that induce x1, · · · , xi are sent on and only on [0,m], and no other
signal realizations are sent on [0,m]. For the same reason,

∑i
j=1wjxj must be the conditional mean

on [0,m] scaled by the weight, namely,

i∑
j=1

wjxj = F (m)E(θ | θ ∈ [0,m]).

But this means the expression of Segment i is exactly (14), which then shows that Segment i is
tangent to cπ. ■
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Proof of Corollary 8

It suffices to show the following lemma.

Lemma 14. Suppose xi and xi+1 are induced and only induced on states [ℓ, h]. Let the weight
of si (si+1) being sent be wi (wi+1). Regardless of the original information structure, the
following modification leads to a payoff equivalent structure:

• In states [ℓ̃, h̃], signal si+1 is sent, such that ℓ < ℓ̃ < h̃ ⩽ h, and∫ h̃

ℓ̃
f(θ)dθ = wi+1, and 1

wi+1

∫ h̃

ℓ̃
θf(θ)dθ = xi+1.

• In states [ℓ, ℓ̃) ∪ (h̃, h], signal si is sent.

We first consider the existences of ℓ̃ and h̃. Let h̃(t) be an implicit function defined by∫ h̃(t)

t
f(θ)dθ = wi+1.

Since f is assumed to have full support, h̃(t) is strictly increasing. It is also clear that h̃(·) is
continuous. To show this, first recall that f is continuous on [0, 1], so that there exists m and M

such that m ⩽ f ⩽ M for all θ ∈ [0, 1]. Let ε > 0 be given. We show that for any t1, for t2 satisfying
|t2 − t1| < δ, |h̃(t2)− h̃(t1)| < ε, where δ = εm/M . For simplicity, we show only when t2 > t1, and
the other side is similar.

By definition,
∫ h̃(t1)
t1

f(θ)dθ =
∫ h̃(t2)
t2

f(θ)dθ, or equivalently,

∫ t2

t1

f(θ)dθ =

∫ h̃(t2)

h̃(t1)
f(θ)dθ.

The left hand side is less than δM . Substitute δ = εm/M , this means∫ h̃(t2)

h̃(t1)
f(θ)dθ < εm.

Since f ⩾ m, h̃(t2)− h̃(t1) < ε.

Define function

x̃(t) =
1

wi+1

∫ h̃(t)

t
θf(θ)dθ,

which is the posterior mean induced by the cell [t, h̃(t)]. Notice that this is also continuous (which
can be shown similarly and the details are omitted). Let t̄ be the point in [ℓ, h] such that h̃(t̄) = h.
Since x̃(ℓ) < xi+1 < x̃(t̄), by the intermediate value theorem, there exists ℓ̃ such that xℓ̃ = xi+1. In
turn, this is exactly the ℓ we are looking for. Also, h̃ = h̃(ℓ).
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The rest of the proof is clear: since the structure after modifications keeps the same xi+1, wi+1,
it must keep the same wi, which then shows xi must be unchanged as well. Given (2), this is all we
need. ■

Proof of Theorem 9

The Receiver’s ex-ante expected payoff under a four-signal structure is

4∑
i=1

wix
2
i .

Substitute x2 = x1 + 2b, x3 = x4 − 2b, w1 = 2x1, w4 = 2(1 − 2x4), and w2 and w3 from (4), the
payoff is half of the following (That is, for simplicity, we drop the coefficient 1/2 in the payoff in
the remaining part of the proof.)

x1 + x4 − 2x1x4 − 8b2(1 + 2x1 − 2x4)− 4b(x1 + 2x21 − 4x1x4 + x4(2x4 − 1)). (15)

The Receiver chooses x1 and x4 to maximize this subject to 0 < x1 < x4 < 1 and

x4 − x1 ⩾ 6b.

This is because the Receiver must also fit x2 and x3 in between, so that the IC condition implies
there must be at least 6b distance between x1 and x4. The Hessian matrix of the objective (i.e.,
payoff) function in (15),

H =

[
−16b 16b− 2

16b− 2 −16b

]
Given the range of b, H is negative definite, showing that (15) is strictly concave in both variables.
This implies that we can use the Kuhn-Tucker conditions to solve the optimzer. The Lagrange
function is

L(x1, x4, λ) = x1 + x4 − 2x1x4 − 8b2(1 + 2x1 − 2x4)− 4b(x1 + 2x21 − 4x1x4 + x4(2x4 − 1))

+ λ(x4 − x1 − 6b).

The Kuhn-Tucker conditions are

∂L
∂x1

= 1− 16b2 − 4b(1 + 4x1 − 4x4)− 2x4 − λ = 0,

∂L
∂x4

= 1 + 16b2 + 4b(1 + 4x1 − 4x4)− 2x1 + λ = 0,

λ · ∂L
∂λ

= λ(x4 − x1 − 6b) = 0, λ ⩾ 0.
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Notice that the conditions are slightly simplified since we know that x1 and x4 must be strictly
between 0 and 1. We also know that the solution must exist since the objective function is strictly
concave and the feasible region is convex. The Kuhn-Tucker conditions give

x1 =
1

2
− 3b, x4 =

1

2
+ 3b, and λ = 10b(8b− 1).

Notice that since λ > 0, the constraint must bind, which implies that the IC condition binds
everywhere. Therefore,

x2 =
1

2
− b, x3 =

1

2
+ b,

w2 = w3 = 6b− 1

2
.

Notice that when b = 1/8, the distribution of posterior mean here is exactly the one induced by the
four-cell even-partition structure.

We then need to verify that such distribution of posterior means can be induced by an infor-
mation structure. Of course, one can check that the corresponding integrated CDF lies below
cπ(x) = x2/2. Alternatively, since all mixing regions only induces two posterior means, a mixing
region [ℓ, h] that induces xi and xi+1 can be generated by an information structure if and only if

xi + (xi − ℓ) ⩾ xi+1 − (h− xi+1),

and the equality holds if the mixing is degenerate; that is, xi and xi+1 are induced by two partition
cells. The idea is as follows. Imagine xi and xi+1 were induced by partition cells. If the right
boundary of the cell induces xi was smaller than the left boundary of the cell induces xi+1, the
two posterior would be two spreaded from each other such that even-partition structures could
not generate such posterior means. In turn, the two cells must overlap with each other in a mixing
structure. It turns out that this is also all one need for feasibility. It can be verified that the structure
above is always feasible.

Given the Receiver’s payoff is
∑N

i=1wixi, the payoffs of the structure propsed in Theorem 9 is

−96b3 + 17b2 +
1

4
. (16)

The payoff of the three-cell even-partition strucuture is 35/108. Notice that in (1/8, 1/6), (16) is
strictly monotone decreasing. When b = 1/8, (16) is 21/64, greater than 35/108. When b = 1/6, the
structure proposed in Theorem 9 reduces to a two-signal structure with payoff 5/18, lower than
35/108. The existence of b̄ is then guaranteed by the intermediate value theorem, and it must be
unique. To solve for b̄, let

−96b3 + 17b2 +
1

4
=

35

108
,

which gives b̄ ≈ 0.134309. ■

36



Proof of Proposition 12

To see that (9) must bind, suppose the contrary. That is, ifπ⋆ is the optimal structure,E−E(π⋆) =

ε > 0. Pick an arbitrary signal realization sk (that induces xk in π⋆). Since g(·) is continuous, there
exists z̄ > 0 such that

0 < g(z̄)− (−wk lnwk) <
ε

2
.

We now proposed the following modified information structure π′. Pick some m ∈ (0, 1) (defined
later), and create a new signal s′k. Then,

π′(s | ω) =


π⋆(s | ω) if s ̸= sk or s′k,

π(sk | ω) if s = s′k,

0 if s = sk

if ω < m,

and

π′(s | ω) =

π⋆(s | ω) if s ̸= s′k,

0 if s = s′k

if ω ⩾ m.

That is, we split the signal realization sk in two by replace sk by s′k for all states below m. m is
defined such that the overall weight of sending s′k is less than z̄, i.e.,∫ m

0
π⋆(sk | ω)f(ω)dω < z̄,

which is always feasible since f is continuous and every signal realization is assumed to be
generated with positive weights. This modification only increase the entropy less than ε/2 so that
(9) is still satisfied. Yet it is clear that the designer is better off. ■

Proof of Proposition 13

Consider a k-cell structure for some arbitrary k ⩾ 3. (The problem is more or less trivial if
there are at most two cells.) For a given upper bound E on the entropy, the information designer’s
problem is

min
w1,··· ,wk−1

k−1∑
i=1

w3
i +

(
1−

k−1∑
i=1

wi

)3

subject to −
k−1∑
i=1

wi lnwi −

(
1−

k−1∑
i=1

wi

)
ln

(
1−

k−1∑
i=1

wi

)
⩽ E,

and wi ⩾ 0 for all i = 1, · · · , k − 1. The Lagrangian is

L =
k−1∑
i=1

w3
i +

(
1−

k−1∑
i=1

wi

)3

+ λ

[
−E −

k−1∑
i=1

wi lnwi −

(
1−

k−1∑
i=1

wi

)
ln

(
1−

k−1∑
i=1

wi

)]
.
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For a generic i, the FOC is

∂L
∂wi

= 3w2
i − 3

(
1−

k−1∑
i=1

wi

)2

+ λ

[
ln

(
1−

k−1∑
i=1

wi

)
− lnwi

]
= 0. (17)

Let 1− w1 − · · · − wk−1 = wk. The FOC indicates that, if wi ̸= wk for all i = 1, · · · , k − 1,

λ =
3(w2

i − w2
k)

lnwi − lnwk
.

This further implies that for i ̸= j,

(wi/wk)
2 − 1

(wj/wk)2 − 1
=

ln(wi/wk)

ln(wj/wk)
.

Since the function

g(x) =
x2 − 1

lnx
(18)

is strictly increasing, wi/wk = wj/wk, or simply, wi = wj . This shows that in an optimal structure,
there are at most two cell sizes, and all but one cell share the same size.

Let’s further check the second order conditions. Using (17),

∂2L
∂w2

i

= 6wi + 6wk −
λ

wi
− λ

wk
,

∂2L
∂wi∂wj

= 6wk −
λ

wk
.

We can then write the bordered Hessian matrix HB
k . Since w1 = · · · = wk−1 in the solution of the

FOCs, we will write all wi as w1 for i = 1, · · · , k − 1. Then,

HB
k =



0 ln wk
w1

ln wk
w1

· · · ln wk
w1

ln wk
w1

6w1 + 6wk − λ
w1

− λ
wk

6wk − λ
wk

· · · 6wk − λ
wk

ln wk
w1

6wk − λ
wk

6w1 + 6wk − λ
w1

− λ
wk

· · · 6wk − λ
wk...

...
... . . . ...

ln wk
w1

6wk − λ
wk

6wk − λ
wk

· · · 6w1 + 6wk − λ
w1

− λ
wk


To calculate the determinant of this matrix, we first subtract Row 2 from Rows 3, 4 · · · , k. We then
subtract Column k from Columns 2, 3 · · · k−1. All these operations do not change the determinant.
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The matrix has been transformed into the following matrix,

0 0 0 0 · · · 0 ln wk
w1

ln wk
w1

6w1 − λ
w1

0 0 · · · 0 6wk − λ
wk

0 −6w1 +
λ
w1

6w1 − λ
w1

0 · · · 0 0

0 −6w1 +
λ
w1

0 6w1 − λ
w1

· · · 0 0
...

...
...

... . . . ...
...

0 −6w1 +
λ
w1

0 0 · · · 6w1 − λ
w1

0

0 −12w1 +
2λ
w1

−6w1 +
λ
w1

−6w1 +
λ
w1

· · · −6w1 +
λ
w1

6w1 − λ
w1


We can then expand this matrix from the first column. It suffices to consider the determinant of
the following matrix

0 0 0 · · · 0 ln wk
w1

−6w1 +
λ
w1

6w1 − λ
w1

0 · · · 0 0

−6w1 +
λ
w1

0 6w1 − λ
w1

· · · 0 0
...

...
... . . . ...

...
−6w1 +

λ
w1

0 0 · · · 6w1 − λ
w1

0

−12w1 +
2λ
w1

−6w1 +
λ
w1

−6w1 +
λ
w1

· · · −6w1 +
λ
w1

6w1 − λ
w1


(19)

Add Column 2, · · · , k − 2 to the first column, and then switch Column 1 and Column k − 1 to get

ln wk
w1

0 0 · · · 0 0

0 6w1 − λ
w1

0 · · · 0 0

0 0 6w1 − λ
w1

· · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 6w1 − λ

w1
0

6w1 − λ
w1

−6w1 +
λ
w1

−6w1 +
λ
w1

· · · −6w1 +
λ
w1

(k − 1)
(
−6w1 +

λ
w1

)


This is a triangular matrix, and the determinant is the product of the diagonal elements,

−(k − 1) ln
wk

w1

(
6w1 −

λ

w1

)k−2

.

Also, as we have switch columns once, the determinant of (19) needs to be multiplied by an
additional (−1). The overall determinant of HB

k is then

−(k − 1)

(
ln

wk

w1

)2(
6w1 −

λ

w1

)k−2

. (20)

We should note that all principal minor of HB
k share the same structure, since they are just HB

k−1,
HB

k−2, etc. Therefore, if the determinant HB
k and the determinant of all principal minors of HB

k are
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negative as required by the second order conditions, it must be the case that

6w1 −
λ

w1
> 0,

so that (20) is negative for all k. We already know that λ = 3(w2
1 −w2

k)/ ln(w1/wk), so that we need
to consider the sign of

6w1 −
3(w2

1 − w2
k)

w1 ln
w1
wk

= 3w1

2 + 1−
(
wk
w1

)2
ln wk

w1

 .

Notice that the terms in the bracket is 2 − g(wk/w1). Since limx→1 g(x) = 2, and g(· · · ) is strictly
increasing, we know that 6w1 − (λ/w1) > 0 if and only if wk/w1 < 1, or wk < w1. Therefore, any
solution with wk > w1 will violate the second order conditions, implying that the solution does
not attain a local minimum. That is, the optimal structure must have the following features:

• It is either a even-partition structure; or
• It is a partition structure with two types of cell sizes. All but one cell share the same, larger

cell size, and the one cell left has the smaller cell size.

Let’s now return to the case where the entropy upper bound E is − ln(K+ε) for some ε ∈ [0, 1).
Consider a (K + 2)-cell structure with wK+2 = δ, so that w1 = · · · = wK+1 = (1− δ)/(K + 1). The
entropy of the structure is

−
[
(K + 1)

1− δ

K + 1
ln

1− δ

K + 1
+ δ ln δ

]
= −(1− δ) ln

1− δ

K + 1
− δ ln δ.

If δ < (1− δ)/(K + 1),

−(1− δ) ln
1− δ

K + 1
− δ ln δ > −(1− δ) ln

1− δ

K + 1
− δ ln

1− δ

K + 1
= ln

K + 1

1− δ
> ln(K + 1).

More generally, for any generic k, the structure such that k − 1 cells share a larger cell size, and
the remaining one cell has a smaller cell size must have an entropy greater than ln k. In other
words, for the upper bound − ln(K + ε) for some ε ∈ [0, 1), a structure with K + 2 or more cells
that satisfies the first and the second order conditions above must exceed the upper bound of the
entropy. Thus, the optimal structure is at most K + 1 cell. When ε = 0, the (K + 1)-cell structure
is also impossible (since it must have an entropy strictly greater than lnK), while we have known
that among structures with K or fewer cells, the K-cell even-partition structure performs the best.
When ε ∈ (0, 1), a (K + 1)-cell structure is possible, leading to a structure with two cell sizes
described above. ■
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B More Results under the Uniform Prior

In this section, we show that for the case that Nmax = N is even, the optimal structure can never
contain one and only one mixing region. To show this, we prove several lemmas that first show
that all IC constraints must be binding.

We first note that we are considering the biases that are large enough so that fitting N posterior
means via partition structures is impossible, yet the biases are not too large so that it is impossible
to fit N posterior means via any structures. Formally, to fit N posterior means, the upper bound of
the bias is determined by

(N − 1)× 2b < 1, ⇒ b <
1

2(N − 1)
.

Meanwhile, if b ⩽ 1/2N , one can employ a partition structure. Therefore, we consider

1

2N
< b <

1

2(N − 1)
.

Consider the following structure:

• si−1 and si+2 are sent in partition cells. That is, posterior means xi−1 and xi+2 are induced
by partition cells.

• si and si+1, which induces xi and xi+1, respectively, are mixed in some states.

That is, there are partition cells right before and right after the mixing region. Using Corollary 8,
we know that we can consider the following structure instead:

θ
c1 c2 c3 c4 c5 c6

si−1 si sisi+1 si+2

That is, we convert the original structure into a structure that does not involve mixing when
inducing xi and xi+1.

Lemma 15. In an optimal structure, if a mixing region that induces xi and xi+1 is sandwiched
by two partition cells that induces xi−1 and xi+2, it must be the case that xi+1 − xi = 2b.

Proof. We show this by contradiction. Suppose that xi+1 − xi > 2b. Since this structure is
optimal (which implies that the original structure is also optimal), so that

xi − xi−1 = 2b, and xi+2 − xi+1 = 2b.

Also notice that this no-mixing structure allow us to write xi and xi+1 easily in terms of the
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“partition” points:

xi =
c3 − c2

c3 − c2 + c5 − c4

c2 + c3
2

+
c5 − c4

c3 − c2 + c5 − c4

c4 + c5
2

,

xi+1 =
c3 + c4

2
.

Also, xi−1 = (c1 + c2)/2, and xi+2 = (c5 + c6)/2.

Consider the modification that moves c2 to c2+ε for some arbitrarily small ε. First observe
that this does not violate IC conditions – the only one that needs to be examined is the distance
between xi−1 and xi. Using the partition points,

2(xi − xi−1) =
c23 − c22 + c25 − c24
c3 − c2 + c5 − c4

− (c1 + c2).

Differentiate this with respect to c2 to get

−2(c3 − c2 + c5 − c4) + (c23 − c22 + c25 − c24)

(c3 − c2 + c5 − c4)2
− 1,

whose sign depends on(
−c22 + c23 − c24 + c25

)
− (−c2 + c3 − c4 + c5)

2 − 2c2(−c2 + c3 − c4 + c5),

which simplifies to
2(c5 − c4)(c3 − c2) > 0.

Therefore, the IC conditions are still preserved.

Next, let’s consider whether this modification also increases the payoffs of the Receiver.
Since xi+1, xi+2 and their weights are unchanged, it suffices to examine wi−1x

2
i−1 + wix

2
i ,

which is
(c2 − c1)

(c1 + c2)
2

4
+

(c23 − c22 + c25 − c24)
2

4(c3 − c2 + c5 − c4)
.

Similarly, differentiate with c2 to get

1

4

(
(c1 + c2)

2 + 2(c2 − c1)(c1 + c2) +

(
c22 − c23 + c24 − c25

)2
(−c2 + c3 − c4 + c5)2

+
4c2
(
c22 − c23 + c24 − c25

)
−c2 + c3 − c4 + c5

)
,

whose sign depends on[
c22 − c23 + c24 − c25 + 2c2(−c2 + c3 − c4 + c5)

]2 − (c2 − c1)
2(−c2 + c3 − c4 + c5)

2. (21)
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To consider the sign of (21), we further need xi − xi−1 = 2b, which is

c3 − c2
c3 − c2 + c5 − c4

c2 + c3
2

+
c5 − c4

c3 − c2 + c5 − c4

c4 + c5
2

− c1 + c2
2

= 2b,

or equivalently,

c23 − c22 + c25 − c24 − (c1 + c2)(c3 − c2 + c5 − c4) = 4b(c3 − c2 + c5 − c4).

Now consider (21) again. It can be decomposed into two factors,

c22 − c23 + c24 − c25 + 2c2(c3 − c2 + c5 − c4)− (c2 − c1)(c3 − c2 + c5 − c4)

= c22 − c23 + c24 − c25 + (c1 + c2)(c3 − c2 + c5 − c4)

= − 4b(c3 − c2 + c5 − c4) < 0,

and

c22 − c23 + c24 − c25 + 2c2(c3 − c2 + c5 − c4) + (c2 − c1)(c3 − c2 + c5 − c4)

= c22 − c23 + c24 − c25 + (3c2 − c1)(c3 − c2 + c5 − c4)

= c22 − c23 + c24 − c25 + (c1 + c2)(c3 − c2 + c5 − c4) + 2(c2 − c1)(c3 − c2 + c5 − c4)

= 2(c3 − c2 + c5 − c4)(c2 − c1 − 2b).

Therefore, if c2 − c1 ⩾ 2b, the sign of (21) (hence the sign of the derivative of the payoff of the
Receiver) is negative. Given the assumption that the original structure is optimal, this must be
true. In other words, the size of the cell that induces xi−1 is at least 2b. A symmetric argument
also shows that c6 − c5 ⩾ 2b.

Since the length of the cell that induces xi−1 is at least 2b, c2 − xi−1 ⩾ b. Similarly,
xi+2 − c5 ⩾ b. Because of the binding IC constraints,

xi − c2 ⩽ b, and c5 − xi+1 ⩽ b.

Recall that by assumption, xi+1 − xi > 2b. Then, it is easy to see that this structure (in
particular, the mixing region in the middle) is not feasible. ■

We now turn to the partition cells before the first mixing region and after the last. As a
preparation, we have the following.

Lemma 16. The first and the last IC constraints must bind in an optimal structure.
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Proof. Let’s consider the first IC, x2 − x1 ⩾ 2b in this proof. The part regarding the last IC can
be shown symmetrically.

First notice that if x2 and x3 are generated by a mixing, then the conclusion holds using
Lemma 4. Suppose from now on that x2 is generated by a partition cell [a1, a2].

Suppose the contrary; that is, x2 − x1 > 2b. In turn,

a1 + a2
2

− a1
2

> 2b, ⇒ a2 > 4b.

It follows that either [0, a1] has length larger than 2b, or [a1, a2] has length larger than 2b (or
both).

Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b.Case 1: Suppose a2 − a1 > 2b, but a1 ⩽ 2b. There are two subcases:

• Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b.Case 1.1: x3 − x2 > 2b. In this case, consider the modification that slightly increases a1.
IC conditions are still preserved, since x2 − x1 > 2b and x3 − x2 > 2b before the
modification.
In terms of the payoffs, notice that only w1, x1, w2, x2 are affected by this modification,
so that we consider

w1x
2
1 + w2x

2
2 =

1

4

[
a31 + (a2 − a1)(a2 + a1)

2
]

=
1

4
(a32 + a22a1 − a2a

2
1)

Omit the coefficient 1/4 and take the derivative with respect to a1 to get

(a2 − a1)
2 − a21.

By assumption, this is positive, so that slightly increasing a1 also increases the expected
payoff.

• Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b.Case 1.2: x3 − x2 = 2b. First assume that x3 is induced by a cell. Consider the modifica-
tion that slightly decreases a2. This modification decreases x3 and x2, but the distance

x3 − x2 =
a2 + a3

2
− a1 + a2

2
=

a3 − a1
2

does not change. Also, since x2−x1 > 2b, this modification does not break IC conditions.
The case that x3 is induced by a mixing region (together with x4) is more complicated.
Using Corollary 8, we can say that there exists d2, d3 such that a2 < d2 < d3 < a4, such
that x3 is induced by [a2, d2) ∪ [d3, a4], and x4 is induced by [d2, d3). The modification
needs to take care the case that x3 − x2 = 2b, x4 − x3 = 2b, and x5 − x4 = 2b – which
gives the most strict constraints on the locations of posterior means. The modification
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involves decreasing a2 and s3 in a proper way. The idea is that given x2 is induced in
a large region, and x3 is close to a2, we need to redistribute weight from x2 to x3 by
reducing a2. Yet we also need to preserve the IC constraints, so that we also adjust s3,
so that x3 does not decrease too fast. We omit the math details.

Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b.Case 2: Suppose a1 > 2b. Immediately, due to the size of b, we must have 1 − aN−1 < 2b.
That is, the first cell is larger than the last cell. Consider the modification that reduces the first
cell by slightly decreasing a1. Also, we make a parallel shift for all the structure between a1

and aN−1. That is, the first cell is shrinked, the last cell is enlarged, and nothing is changed
in the middle in terms of the structure. Notice that only the first and the last IC conditions
change under this modification. The last IC condition is still easily preserved, since

xN − xN−1 = (xN − aN−1) + (aN−1 − xN−1).

aN−1 − xN−1 is not changed under this modification since the parts in the middle is shifted
in a parallel way. xN − aN−1 is larger after the modification since

xN − aN−1 =
1 + aN−1

2
− aN−1 =

1− aN−1

2
,

and aN−1 is smaller after the modification. The first IC condition is also preserved (even
though x2 − x1 is now smaller), since it is not binding originally.

To see that the Receiver’s expected payoff is increased after the modification, one can use
the argument above and calculate the derivative again. Intuitively, the first cell and the last
cell become more even after the modification. ■

Lemma 17. In an optimal structure, all IC conditions are binding until the first mixing, and
after the last mixing.

ai−2 ai−1 ai ai+1
xi−1 xi+2xi xi+1

Figure 13 Part of the Structure with A Non-Binding IC condition

Proof. Suppose on the contrary that some IC conditions before the first mixing or after the
last are not binding. Then, at least the part before first mixing or the part after the last mixing
contains at least one non-binding IC. Consider the part regarding before first mixing. The
part regarding after last mixing can be shown symmetrically.

Suppose that xi and xi+1 is the first pair where the IC condition is not binding. By
Lemma 16, this cannot be the first IC condition. That is, there must exist xi−1 that is also

45



generated by a partition cell.

First notice that since the structure is optimal, it cannot be the case that xi+1 is generated
by a mixing. It is easy to see that if ai−ai−1 > ai−1−ai−2, then slightly increasing ai−1 always
increases the expected payoff of the Receiver without violating any IC conditions. Therefore,
it suffices to consider that ai − ai−1 ⩽ ai−1 − ai−2, as shown in Figure 13.

Sincexi−xi−1 = 2b, ai−ai−2 = 4b, so thatai−xi ⩽ b. This meansxi+1−ai = ai+1−xi+1 > b,
which in turn suggests that ai+1 − ai > 2b. In words, the cell [ai, ai+1] must be strictly larger
than the cell [ai−1, ai].

Suppose that xi+2 − xi+1 > 2b. Then a similar argument implies that one can slightly
increase ai, maintain all IC constraints, and make the two cells [ai, ai+1] and [ai−1, ai] more
even, so that the Receiver’s payoff is higher. This indicates that xi+2 − xi+1 = 2b.

We now need to consider two cases:

• Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2].Case 1. xi+2 is generated by partition cell [ai+1, ai+2]. The binding IC condition between
xi+2 and xi+1 then suggests [ai+1, ai+2] must be strictly smaller than [ai, ai+1]. In turn,
it is payoff-increasing and feasible (i.e., not violating any IC) to decrease ai+1, using the
logic that the two cells [ai, ai+1] and [ai+1, ai+2] are more even.

• Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing.Case 2. xi+2 is generated by a mixing. In this case, decreasing ai+1 still works. Again, the
IC conditions are not violated anywhere by slightly decreasing ai+1. Moreover, since
ai+1 − ai > 2b, the proof of Lemma 15 has already shown that slightly decreasing ai+1

is beneficial.

Therefore, one can always find a payoff-improving operation if xi+1 − xi > 2b. In turn, if
there exists at least one IC condition that is not binding before the first mixing, the structure
cannot be optimal. ■

Immediately we have the following conclusion.

Corollary 18. If an optimal structure only contains one pair of mixing, all IC conditions bind.

We can use Corollary 18 to learn the optimal structure under the restriction that there is only one
mixing region. In particular, we consider fitting N = 2k signal realizations when b ∈ ( 1

2N , 1
2(N−1)).

Under this range of b, it is impossible to fit N signal realizations using a partition structure, so that
mixing is necessary.

We start with a feasibility result.

Lemma 19. It is impossible to have even number of cells on the left of the mixing region.
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Proof. Suppose not. That is, there are 2M partition cells on the left of the mixing region (where
M can be 0). In turn, there are N −2M −2 partition cells on the right of the mixing region. By
Corollary 18, the combined length of two neighboring partition cells must be 4b. The length
of the mixing region must be larger than 4b, so that the total length of the structure must be
greater than (

2M

2
+

N − 2M − 2

2

)
× 4b+ 4b = 2Nb > 1,

which is impossible. ■

Notice that Lemma 19 suggests that it is also impossible to have even number of cells on the right
of the mixing region. This gives us the structure in Figure 14.
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4b 4b

Figure 14 Structure with One Mixing

The way of mixing not only determines the lengths of the first and the last cells; it also affects
the lengths of the cells in each group. Although the total length of each group is fixed at 4b, how
this 4b length is assigned to either cells in the group is determined by the way of mixing. To
be precise, since xi − xi−1 = 2b, the last cell before mixing (i.e., the cell corresponding to signal
realization si−1) must have length

2× (2b− (xi − ai−1)) ,

where xi − ai−1 is determined by the way of mixing. Then, since xi−1 − xi−2 = 2b, the length of
the cell corresponding to signal realization si−2 is also determined by the way of mixing.

Therefore, as shown in Figure 14, we only have four types of cells: LL, LS, RL, RS. “L/R”
means left/right (toward the mixing region), while “L/S” means long/short. We should note that
“long/short” does not always imply, for example, RL type is longer than RS. In general, it should
be the case: the total length of the mixing region is greater than 4b, so that

(xi − ai−1) + (ai+1 − xi+1) > 2b.
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The intuition above – squeezing the first and the last cell implies the first distance xi − ai−1 and
the second distance (ai+1 − xi+1) should both be greater than b.12 But it is also possible that only
one distance is greater than b, while the other is smaller.

If we want to write down the payoff of the structure shown in Figure 14, there are two things
we need to consider:

• The way of mixing (i.e., the length of the mixing region and the location of the posterior
means inside the mixing region) – this determines the length of each type of partition cells.
Therefore, the payoff from the mixing region and the payoff of each cell can be calculated by
knowing the way of mixing.

• The number of each type of the cells. This is determined by the location of the mixing region.

We introduce the following result that indicates we only need the way of mixing if we only care
about the optimal structure.

Lemma 20. For a given way of mixing and an optimal structure, it is without loss to consider
the case that the signal realizations involved in the mixing are either s2 and s3, or sN−2 and
sN−1.

Proof. It is much easier to see this result if we use the true quadratic preferences (so that the
payoff of each cell is the conditional variance), which is equivalent to what we have been used
so far. The way of mixing determines the first and the last cell (as well as the mixing region
itself). Therefore, we can consider the cell groups in the middle, xi−2 and xi−1, xi+2 and xi+3,
and so on. For each cell group, the total payoff is higher if the two cells contained in the group
is more balanced. Therefore, if

|b− (xi − ai−1)| < |(ai+1 − xi+1)− b| ,

the cell groups on the left of the mixing region is more balanced, so that the optimal structure
should maximize the number of the left groups, and the mixing region is placed at sN−2 and
sN−1. Conversely, if

|b− (xi − ai−1)| > |(ai+1 − xi+1)− b| ,

the cell groups on the right of the mixing region is more balanced, so that the optimal structure
should maximize the number of the right groups, and the mixing region is placed at s2 and
s3. When the two absolute values are equal (so that the mixing is symmetric), then it does
not matter where to place the mixing region, so that without loss we can consider placing the

12In fact, one can easily show that if we do not consider all posterior means but the two in the mixing, the optimal
mixing region should be symmetric.
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region at either s2 and s3, or sN−2 and sN−1. ■

We can further without loss consider the case that the mixing happens at sN−2 and sN−1 by
restricting the mixing to satisfy

|b− (xN−2 − aN−3)| < |(aN−1 − xN−1)− b| .

If not, we can just relabel every ai and xi by 1− ai and 1− xi (since the prior density is uniform –
completely flat). Notice that this kills RL type. Given N = 2k, we now have 1 RS type cell, (k − 1)

LS type cells, and (k − 2) LL type cells. Now we are ready to write the payoffs. Still, it is easier to
just use the true quadratic preferences

N∑
i=1

∫ 1

0
−(θ − xi)

2f(θ)π(si | θ)dθ,

since the payoff in this case does not depend on the location of the cells. By abstracting away from
the specific locations, let c be the length of the mixing region, and z1, z2 defined as in Figure 14. In
particular, z2 = 2b− z1. Using the system of equations

 wN−2 + wN−1 = c

wN−1z2 − wN−2z1 = 0,

we get

wN−2 =
c(2b− z1)

2b
and wN−1 =

cz1
2b

. (22)

The second equation of in the system is acquired from the following

aN−1 + aN−3

2
=

wN−2

wN−2 + wN−1
xN−2 +

wN−1

wN−2 + wN−1
xN−1

=
wN−2

wN−2 + wN−1

(
aN−1 + aN−3

2
− z1

)
+

wN−1

wN−2 + wN−1

(
aN−1 + aN−3

2
+ z2

)
=

aN−1 + aN−3

2
+

wN−1

wN−2 + wN−1
z2 −

wN−2

wN−2 + wN−1
z1.

Since ∫ aN−1

aN−3

−(θ − xN−2)
2f(θ)π(sN−2 | θ)dθ = wN−2x

2
N−2 −

∫ aN−1

aN−3

θ2π(sN−2 | θ)dθ,
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we can write the payoff from the mixing region as

wN−2x
2
N−2 + wN−1x

2
N−1 −

∫ aN−1

aN−3

θ2dθ

= wN−2

(
aN−1 + aN−3

2
− z1

)2

+ wN−1

(
aN−1 + aN−3

2
+ z2

)2

− 1

3

(
a3N−1 − a3N−3

)
= (wN−2 + wN−1)︸ ︷︷ ︸

=(aN−1−aN−3)

(
aN−1 + aN−3

2

)2

+ wN−2z
2
1 + wN−1z

2
2 −

1

3

(
a3N−1 − a3N−3

)
= wN−2z

2
1 + wN−1z

2
2 −

1

12
c3

=
c(2b− z1)

2b
z21 +

cz1
2b

(2b− z1)
2 − 1

12
c3

= c(2b− z1)z1 −
1

12
c3 (23)

In the third line, we again use the fact thatwN−1z2−wN−2z1 = 0. The fourth line uses the definition
of c, aN−1 − aN−3 = c. The fifth line uses the weights in (22).

For a generic cell, ∫ aj

aj−1

−(θ − xj)dθ = − 1

12
(aj − aj−1)

3, (24)

since xj = (aj−1 + aj)/2. Therefore, to find out the payoff of a cell, it suffices to find out the length
of the cell. Type RS, LS, LL have lengths

8b− c− 2z1, 4b− c+ 2z1, and c− 2z1,

respectively. Therefore, the expected payoff of the Receiver, using these length, (24) and (23) is

(k−1)

[
− 1

12
(4b− c+ 2z1)

3

]
+(k−2)

[
− 1

12
(c− 2z1)

3

]
+

[
c(2b− z1)z1 −

1

12
c3
]
+

[
− 1

12
(8b− c− 2z1)

3

]
.

The Receiver needs to choose c and z1 to maximize this. Equivalently, by multiplying −12, the
Receiver minimizes the following

(k − 1)(4b− c+ 2z1)
3 + (k − 2)(c− 2z1)

3 + c3 − 12c(2b− z1)z1 + (8b− c− 2z1)
3. (25)

Until now, we treat c as a choice variable. But this is in fact not true. Notice that

• There are (k − 2) 4b-long groups, containing 2k − 4 signal realizations; namely, the signal
realizations s2, · · · , sN−3.

• The remaining parts are the first cell (Type LS with length 4b − c + 2z1), last cell (Type RS
with length 8b− c− 2z1), and the mixing region (with length c).
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Since the total length sums up to 1,

(k − 2)× 4b+ 4b− c+ 2z1 + 8b− c− 2z1 + c = 1 ⇒ c = 4(k + 1)b− 1.

Substitute this back to (25), the Receiver in fact solves the following problem

min
z1

4
[
4b2(k − 1)(k(4b(2k + 5)− 3)− 6) + 6bz1(−8b(k − 2)k + 2k − 5) + 3z21

]
+ 1, (26)

subject to the condition that the length of Type-LS cell is closer to 2b than the length of Type-RS
cell (so that the cell group on the left of the mixing region is more evenly distributed).

Removing all terms that do not contain z1, we can easily see that (26) is a quadratic function,
and the global minimum is attained at

b [5− 8k(k − 2)b+ 2k] .

We need to evaluate this value to determine the monotonicity of (26). Rewrite the terms in the
bracket as

5 + 2k − 2k(2k − 4)2b = 5 +N −N(N − 4)2b.

Since b is at most 1/2(N − 1), this value is larger than

5 +N −N × N − 4

N − 1
> 5.

Therefore, for all feasible z1 (since 0 < z1 < 2b by definition), (26) is monotone decreasing. The
problem now is to find the largest possible z1 given the constraint

|2b− the length of Type-LS cell| ⩽ |2b− the length of Type-RS cell|. (27)

Here, using c = 4(k+1)b− 1, the length of Type-LS cell is 1+ 2z1 − 4kb, and the length of Type-RS
cell is 1− 2z1 − 4(k − 1)b. To remove the absolute values, we consider the following three cases:

• Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1.Case 1. Both lengths are less than 2b. In this case, 1 + 2z1 − 4kb < 2b

1− 2z1 − 4(k − 1)b < 2b,
⇒ 1

2
− (N − 1)b < z1 < (N + 1)b− 1

2
.

It can be verified that if b ∈ ( 1
2N , 1

2(N−1)), we have

1

2
− (N − 1)b < b < (N + 1)b− 1

2
,

so that the range above is valid. The constraint (27) now simplifies to

2b− (1 + 2z1 − 4kb) ⩽ 2b− [1− 2z1 − 4(k − 1)b]
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which gives z1 ⩾ b. Therefore, it is ideal to pick z1 = (N + 1)b − 1/2, although this is not
feasible since we need the length of Type-LS cell to be strictly less than 2b in this case. (In
fact, when z1 = (N + 1)b − 1/2, the length of Type-LS cell is exactly 2b. We will go back to
this solution in the last case.)
Still, there is another restriction we have not considered: we need the length of Type-RS cell
to be positive. When z1 = (N + 1)b− 1/2, the length of Type-RS cell is

1− 2

[
(N + 1)b− 1

2

]
− 4(k − 1)b = 2− (2N − 1)2b.

When b → 1/2(N − 1), this length is negative. In turn, when

2− (2N − 1)2b < 0 ⇒ b >
1

2N − 1
,

one has to pick a further smaller z1 that keeps the length of Type-RS cell positive. This implies

c

2
− z2 < 2b.

The LHS is the distance between aN−1 and xN−1. This further gives

z1 < z⋆1 =
1

2
− (N − 2)b.

Notice that this value is indeed between (N+1)b−1/2 and 1
2−(N−1)b when b > 1/(2N−1).

• Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2.Case 2. The length of Type-LS cell is less than 2b, but the length of Type-RS cell ⩾ 2b. This
means that

z1 ⩽
1

2
− (N − 1)b

in this case. The constraint (27) now simplifies to

2b− (1 + 2z1 − 4kb) ⩽ 1− 2z1 − 4(k − 1)b− 2b ⇒ 2Nb− 1 ⩽ 1− 2Nb.

Given the range of b, the LHS is positive, yet the RHS is negative. Therefore, this case is
impossible to satisfy (27).

• Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3.Case 3. The length of Type-LS cell ⩾ 2b, but the length of Type-RS cell is less than 2b. This
gives z1 ⩾ (N + 1)b− 1/2. In terms of the constraint in (27),

1 + 2z1 − 4kb− 2b ⩽ 2b− [1− 2z1 − 4(k − 1)b] ⇒ 1− 2Nb ⩽ 2Nb− 1,

which always hold. Again, we need the length of Type-RS cell positive, meaning z1 < z⋆1 .
When b ⩽ 1/(2N − 1), z⋆1 > (N + 1)b− 1/2, so that picking z⋆1 leads to the length of Type-RS
cell being 0, while the length of Type-LS cell larger than 2b (so that we are in Case 3). If
b > 1/(2N − 1), keeping length of Type-RS cell positive means that we are back to Case 1.
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We should further note that there is no “Case 4” in which both Type-LS and Type-RS cells have
lengths at least 2b, since the overall length of the structure exceeds 1.

What we learned in the discussion so far is as follows. For any b ∈ ( 1
2N , 1

2(N−1)), due to the
quadratic form of (26), the Receiver should pick z1 as large as possible. For b relatively small
(b < 1/(2N − 1)), so that the length of the mixing region c = 4(k + 1)b − 1 is relatively small,
pushing z1 to z⋆1 makes the length of Type-LS cell greater than 2b. When b relatively large, pushing
z1 to z⋆1 makes the length of Type-LS cell smaller than 2b. But in any case, this always leads to the
limit z⋆1 , under which the last cell is shrinked to the degenerate (length-0) cell.

We should also note that while we consider that cases that N is even, the argument clearly does
not apply to N = 2 or N = 4. For N = 2, it is already clear that the optimal structure must be a
partition structure. For N = 4, there is no “4b-long group” used in the argument of Lemma 20,
and the payoff is different from (25) since k = 2, and the second term disappears.

Since an optimal structure must exist, we have the following.

Theorem 21. Let N ⩾ 6 and N is even. For b ∈
(

1
2N , 1

2(N−1)

)
, one of the following must be

true:

• The optimal structure is an even-partition structure with N − 1 cells.
• The optimal structure sends N signal realizations with at least two pairs of mixing.

Proof. Suppose the optimal structure sends N signal realizations. If it contains only one pair
of mixing, it must look like the category characterized in Lemma 20. But when we consider
the optimal structure within this category, we found that the optimal structure does not exist
unless one signal realization is send with probability zero. This means any structures with all
non-trivial signal realizations and exactly one-pair of mixing cannot be optimal. ■
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